3.460 \(\int (e \sec (c+d x))^m \sqrt {a+i a \tan (c+d x)} \, dx\)

Optimal. Leaf size=107 \[ \frac {i a 2^{\frac {m+1}{2}} (1+i \tan (c+d x))^{\frac {1-m}{2}} (e \sec (c+d x))^m \, _2F_1\left (\frac {1-m}{2},\frac {m}{2};\frac {m+2}{2};\frac {1}{2} (1-i \tan (c+d x))\right )}{d m \sqrt {a+i a \tan (c+d x)}} \]

[Out]

I*2^(1/2+1/2*m)*a*hypergeom([1/2*m, 1/2-1/2*m],[1+1/2*m],1/2-1/2*I*tan(d*x+c))*(e*sec(d*x+c))^m*(1+I*tan(d*x+c
))^(1/2-1/2*m)/d/m/(a+I*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3505, 3523, 70, 69} \[ \frac {i a 2^{\frac {m+1}{2}} (1+i \tan (c+d x))^{\frac {1-m}{2}} (e \sec (c+d x))^m \text {Hypergeometric2F1}\left (\frac {1-m}{2},\frac {m}{2},\frac {m+2}{2},\frac {1}{2} (1-i \tan (c+d x))\right )}{d m \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^m*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*2^((1 + m)/2)*a*Hypergeometric2F1[(1 - m)/2, m/2, (2 + m)/2, (1 - I*Tan[c + d*x])/2]*(e*Sec[c + d*x])^m*(1
+ I*Tan[c + d*x])^((1 - m)/2))/(d*m*Sqrt[a + I*a*Tan[c + d*x]])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 3505

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(d*S
ec[e + f*x])^m/((a + b*Tan[e + f*x])^(m/2)*(a - b*Tan[e + f*x])^(m/2)), Int[(a + b*Tan[e + f*x])^(m/2 + n)*(a
- b*Tan[e + f*x])^(m/2), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0]

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int (e \sec (c+d x))^m \sqrt {a+i a \tan (c+d x)} \, dx &=\left ((e \sec (c+d x))^m (a-i a \tan (c+d x))^{-m/2} (a+i a \tan (c+d x))^{-m/2}\right ) \int (a-i a \tan (c+d x))^{m/2} (a+i a \tan (c+d x))^{\frac {1}{2}+\frac {m}{2}} \, dx\\ &=\frac {\left (a^2 (e \sec (c+d x))^m (a-i a \tan (c+d x))^{-m/2} (a+i a \tan (c+d x))^{-m/2}\right ) \operatorname {Subst}\left (\int (a-i a x)^{-1+\frac {m}{2}} (a+i a x)^{-\frac {1}{2}+\frac {m}{2}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\left (2^{-\frac {1}{2}+\frac {m}{2}} a^2 (e \sec (c+d x))^m (a-i a \tan (c+d x))^{-m/2} \left (\frac {a+i a \tan (c+d x)}{a}\right )^{\frac {1}{2}-\frac {m}{2}}\right ) \operatorname {Subst}\left (\int \left (\frac {1}{2}+\frac {i x}{2}\right )^{-\frac {1}{2}+\frac {m}{2}} (a-i a x)^{-1+\frac {m}{2}} \, dx,x,\tan (c+d x)\right )}{d \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {i 2^{\frac {1+m}{2}} a \, _2F_1\left (\frac {1-m}{2},\frac {m}{2};\frac {2+m}{2};\frac {1}{2} (1-i \tan (c+d x))\right ) (e \sec (c+d x))^m (1+i \tan (c+d x))^{\frac {1-m}{2}}}{d m \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 162, normalized size = 1.51 \[ -\frac {i 2^{m+\frac {1}{2}} \sqrt {e^{i d x}} e^{i (c+d x)} \left (\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{m-\frac {1}{2}} \sqrt {a+i a \tan (c+d x)} \, _2F_1\left (1,1-\frac {m}{2};\frac {m+3}{2};-e^{2 i (c+d x)}\right ) \sec ^{-m-\frac {1}{2}}(c+d x) (e \sec (c+d x))^m}{d (m+1) \sqrt {\cos (d x)+i \sin (d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sec[c + d*x])^m*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-I)*2^(1/2 + m)*E^(I*(c + d*x))*Sqrt[E^(I*d*x)]*(E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x))))^(-1/2 + m)*Hyper
geometric2F1[1, 1 - m/2, (3 + m)/2, -E^((2*I)*(c + d*x))]*Sec[c + d*x]^(-1/2 - m)*(e*Sec[c + d*x])^m*Sqrt[a +
I*a*Tan[c + d*x]])/(d*(1 + m)*Sqrt[Cos[d*x] + I*Sin[d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {2} \left (\frac {2 \, e e^{\left (i \, d x + i \, c\right )}}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}\right )^{m} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^m*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(2)*(2*e*e^(I*d*x + I*c)/(e^(2*I*d*x + 2*I*c) + 1))^m*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x
+ I*c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i \, a \tan \left (d x + c\right ) + a} \left (e \sec \left (d x + c\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^m*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*(e*sec(d*x + c))^m, x)

________________________________________________________________________________________

maple [F]  time = 1.51, size = 0, normalized size = 0.00 \[ \int \left (e \sec \left (d x +c \right )\right )^{m} \sqrt {a +i a \tan \left (d x +c \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^m*(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

int((e*sec(d*x+c))^m*(a+I*a*tan(d*x+c))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {i \, a \tan \left (d x + c\right ) + a} \left (e \sec \left (d x + c\right )\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^m*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*(e*sec(d*x + c))^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^m\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^m*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int((e/cos(c + d*x))^m*(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e \sec {\left (c + d x \right )}\right )^{m} \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**m*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((e*sec(c + d*x))**m*sqrt(I*a*(tan(c + d*x) - I)), x)

________________________________________________________________________________________